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NOMENCLATURE

Incident-wave amplitude.
Reflected-wave amplitude.
Incident-wave height.
Transmitted-wave height.

Wave length.

Wave number =2z2Rn/An

Circular frequency (2%/T ).
Wave slope (for incident waves).
Group velocity.

Submergence of cylinder center to
mean water surface.

Mean water depth.

Radius of cylinder.

Average energy flux per unit width
of the transmitted waves through a
fixed plane perpendicular to the
direction of wave propagation.
Average energy flux per unit width
of the incident waves through a
fixed plane perpendicular to the
direction of wave propagation.
Force function.

Wave profile.

Velocity potential.

Exciting force (k=%14 ).

Wave period.



I. INTRODUCTION

In this paper, we shall discuss the physical
phenomenon which occurs when a train of regular harmonic
waves passes over a submerged circular cylinder. This
problem was first solved by Dean (1948). He introduced
a complex potential function which satisfied the Laplace
equation and the appropriate linearized boundary conditions.
By conformal mapping, the flow field inside the bounding
surfaces was mapped onto an annulus where the potential
function could be expressed by a Laurent series. After
solving for the coefficients of the Laurent series in a
special case, he obtained the conclusion that, in general,
the coefficient of reflection is zero, and at a great
distance from the cylinder, there is a phase angle
between the incident and transmitted waves, while the

amplitude remains the same.

Ursell (1950} obtained the same conclusion as Dean
by a different approach and included a uniqueness proof.
In his work, a system of multipoles is placed at the
center of the cylinder. The oscillation was expressed
by a symmetric and an antisymmetric part of a velocity
distribution, each of which satisfied all boundary
conditions. He gave the following solution for the
velocity potential when the cylinder was fixed in the
fluid:

F = z(ﬁx exp-KY)-cos(kx + at) + 3,

é, —> 0 a4 X —+ + O

-+

2, - '471’0.exp(—K(g+i))[St"L(KLM'U'E i
r<i r

~cos(Kx - ot)-3 $r (Ka)r_]

= 11

.

a4 X — - o0a

where H’ is positive downward.



The approximate determination of Pr and $r in
the above expression involved a finite set of linear
equations.

Ogilvie (1963) gave a numerical solution of the
exciting forces for a cyvlinder fixed in the fluid by
applying Ursell's procedure. The solution is expressed
as a series in a perturbation parameter. The results
from the linearized (first-~order) theory show that the
first-order forces in the horizontal and vertical
directions are equal in magnitude, but that there exists
a phase angle of 90 degrees between them. The second-order
horizontal force vanished, while in the vertical direction

there was a constant suction directed against gravity.

Here we report an experimental study of this problem.
A discrepancy between the theoretical and experimental
results is found when the cylinder is close to the water
surface, as one might expect. A discussion of this will

appear in the later sections.

Ir. FORMULATION OF THE PROBLEM

The two-dimensional problem will be treated here.
The fluid is assumed inviscid, incompressible, and
irrotational. These assumptions imply that there exists
a velocity potential ¢ which satisfies the Laplace

egquation:

|
+
]
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The velocity potential must also satisfy the following

boundary conditions:

1) iqu-§§==qt on the free surface y= (X, t).

2) &, "’37*'5(?; + Q;}-‘—‘-O on the free surface .

3) Qn’ =0 on the cylinder surface $S .
5
4) ngx, -d,t) =0 for finite depth.
fhm. 3, =0 for infinite depth.
l;-roo }

5) The radiation condition: The waves must be outgoing

at a great distance from the cylinder.

The Exciting Forces

The exciting forces can be evaluated by integrating

the pressure distribution around the cylinder surface,

an
F;‘ = f r-cos(n,k)ad.e k=x;}

-]

where -P can be obtained from Euler's integral:

Prfiy+dp(ic +8) +pE =0



The Wave Profile

The exact formulation for the surface-wave profile

can be expressed as follow:
s oL B, () +L(BEx,m + & x)]
n(th) g [ ¢4 AR S ¢ K

However, there are difficulties in solving the above

equation since 7 is imbedded in the function 3

The approximate solution can be obtained by a
perturbation method. The parameter & in the series
expansion might be chosen equal to the incident wave slope.
The first-order and second-order wave profile are given
by:
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III. THE TECHNIQUE OF WAVE MEASUREMENT

1) The Testing Tank

The experiment was carried out in the Ship Model
Towing Tank, Department of Naval Architecture, at the
University of California, Berkeley. The tank measures
200 feet long, 8 fee£ wide, 6 feet deep and has a
rectangular cross-section. The wave generator is of the
bulkhead type. It makes waves between 2.4 ft. and 40 ft.
in length. The wave amplitude can be varied from 0 to
8 inches. There is a wave damper at the end of the tank.
The reflection of the waves is less than 4 percent if the

wave period is less than one second.

2) The Measurement of Reflected Waves

It is assumed that there exists a reflection from
the c¢ylinder even though theory predicts the reflection

to vanish. Consider the incident wave 7; and reflected

wave qﬂ

n

AL Cos(Kx -ot)

1z

e = A, cos(Kx + ot + Pg)

The origin of the coordinate system is set on the mean
surface level above the center of the cylinder. Then

ﬂ: + YR consists of a superposition of progressive

and standing waves. They can be expressed in the following

form:
Ne * Mo = (Ap = AL) Sinlkx+4 fe) sin( ot +£8:) +

+CA; + Ar) cos(kx+45 Ba)cas (ot +3 o)



At a point where Sin(Kx +% Pr) = Iy costKx+3 Br)=0
this gives (A;“Ag)Shm(vt-+é pr) * At a point where
Sin(Kx +4 fr) =0 v CoSCKX +F el =1 which gives
(Ay + Ag) cosCot +5pg) . This allows one to determine
A; and Ag by moving a wave probe against the incoming
waves in order to find the envelope. Any effect of
reflection from the far end of the tank has been neglected

in the above analysis.

= e I

Az* Ag

N A -
0
v \
i

———

"""" V.

THE ENVELOPE

The determination of the phase angle between the incident
wave and reflected wave can be done in several ways. Since
the experimental results showed that A& is almost zero,

computation of was not attempted.
R

3 The Wave-Probe Arrangement

There were three wave probes designed to measure

the incident waves, the envelope, and the transmitted

waves, respectively.



No. 1 probe, 60 feet in front of the cylinder was
used to measure the incident waves. These waves are used

only for reference.

No. 2 probe, mounted on the carriage, was designed
to move slowly against the incident waves in the region
between the No. 1 probe and the c¢cylinder. It measured the
envelope formed by reflected and incident waves.

No. 3 probe, designed to measure the transmitted
waves, was placed a distance greater than 30 feet behind
the cylinder. At this distance the local disturbance will

have decayed to a negligible wvalue.

The distance between the No. 1 probe and No. 3 probe
was adjusted to an integral number of incident wave lengths
in each test case so that the phase could be compared

directly in the output.

The cylinder was fixed at 90 feet from the wave-maker.

The signals from the wave probes and the force gages
(described in the next section} were amplified and
displayed simultaneously on one chart in five channels.
Two dimensionless parameters were chosen in the experiment.
They are Ka and h/a . The parameter Ka  governed
the change in the wave lengths. The submergence factor

hﬁx governed the changes in the depth of submergence.

The range of these two parameters is as follows:

0.135 £ Ka < 0.8B6

(corresponding to 155ft 2 AN 2 2.44ft),

Lz1s & Mo ¢ 130

(corresponding to 0.425 ft € h < 4.3%5 4t ) -



The water depth at rest was 5.25 feet. The minimum and
maximum incident-wave amplitude in the experiment was
equal to 0.297 inches and 0.572 inches, respectively,
corresponding to the wave length A. = 2.49 feet and

A = 15.49 feet.

IvV. THE DESIGN OF THE DYNAMOMETER

1) Model and Strain Gages

The model was made of an aluminum tube, 8 feet long,
8 inches outside diameter, and 1/8 inch wall thickness.
It was divided into three sections, The 14 inch long
center test section was designed to be watertight. A
flexible plastic membrane covered the clearance between
the center and end sections. A total of 19 1lbs of ballast
had been placed symmetrically in the test section to keep
it neutrally buoyant in the submerged condition. A rigid
steel box beam passes through the center section. This

beam is bolted to two end sections [see Figures 1 and 2].

For the force-gage arrangement, there are two
vertical elements and one horizontal element. The bottoms
of the vertical elements were screwed onto an aluminum
support which connected to the inner wall of the cylinder.
One end of the horizontal element was fixed to the steel
box beam while the other end was connected to the top of
the vertical elements by a solid aluminum block. The

arrangement is shown in Figure 3.

Since the forces act through the center of the
cylinder cross-section, consider now that a vertical force

is acting on the cylinder. This force is transmitted



from the vertical element to the horizontal element. 1In
this case, the vertical elements are acting like a column
under compression on an elastic support and the horizontal
element is acting like a beam under combined flexure and
pure bending. The loading diagram and bending-moment
diagram of the horizontal element may be shown as follows:

w

niE

]
yl—"

-

W

LOADING DIAGRAM BENDING-MOMENT DIAGRAM

The magnitudes of the strains are equal on both ends of
the horizontal element, so that four bonded strain gages
can be placed on the opposite faces at each end and
connected to form a Wheatstone bridge. The direct strains
on the vertical elements caused by these vertical forces

are negligible.

The same loading condition will appear on the
vertical elements for the horizontal-force measurement,

The maximum designed load on the test section is in
either direction +7.0 lbs., with a safety factor equal to
3 in the static condition. The strength of the gages is
great enough for testing in random waves. (Testing in

random waves will not be discussed in this paper.)
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2) Calibration of the Gages

The calibration was carried out statically. The
cylinder was fixed under the water surface transversely
across the tank. Both horizontal and vertical loadings
were applied to the center of the test section by means
of weights, strings, and pulleys. The strains were found
to be linear with respect to the test loadings.

The cross-coupling effect between horizontal and
vertical sensitivity was found to be within 3 percent.
The value is negligible as far as the purpose of the

experiment is concerned.

The sensitivity of the gages was such that they
had a minimum sensitivity (least count) of +0.05 1lbs. of

loading.
V. DATA ANALYSIS
1) The Reflected Waves

The reflection coefficients, defined as the ratio
of reflected-wave and incident-wave amplitude, are shown
in Figure 4. It shows that the maximum value of the
reflection coefficient never exceeds 0.07, but also that
no matter how deep the submergence of the cylinder, there
still exists a small reflection. This reflection may

mainly come from the end of the tank.
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2) Transmitted Waves

A. Shallow-submergence condition (hﬁx = 1.275 and k/“ = 1.50)

Each of the transmitted-wave patterns measured from
the No. 3 wave probe is plotted for one cycle as shown in
Figure 5. These patterns are periodic in time. In fact,
one may get two different patterns at two different positions,
but their spectra should be identical. A Fourier analysis

of the wave patterns has been made in the following form:

1)

Z B, Cos(nol)

16
Fit) = C, "'HZ‘.' A, Sininot) +

2
The spectra, plotted as A;/A: = ( An+By )/4_:
are shown in Figures 6 to 8. The white spectra are foriﬁl
equal to 1.275, the black spectra are for hfa  equal to
1.50'

Since the transmitted waves are not pure sinusoids,
it is meaningless to get the transmission coefficient by
comparing their amplitudes to the incident-wave amplitudes.
Instead, a comparison of the transmitted energy has been
used. The flux of the energy per unit width through a
fixed plane perpendicular to the direction of wave propagation
is given, according to the linearized theory for the

incident wave, by

0
E(x,t) = [ch Q;,x(x,y,t) dy

where §x is the velocity potential of the incident waves
and € 1is the group velocity. The average energy flux

over one period is given by:



- 12 -

E_ = LpaA2c t + 2ZK4L
av 4 & [ sink(2Kd)

~gpg AL K

By superposition, the average energy flux per unit width
through a fixed plane across the transmitted waves is
given, with reference to the Fourier expansion, by

— -__l__ 3'/2 ‘x‘! 2 2 2 Fi 2 2
Earr('r) - 4F3 K [(A, f31)+(————ﬂ‘:/%-5")+ (.__._A5+55)+.....:]

e

The energy transmission coefficient, defined as E%ww/Q;nT)’
is plotted against K& in Figure 9b. From the figure,

one can see that the energy transmission coefficients are
always less than one, as one expects. In addition, there

is a hollow at A& = 0.4 and a hump at K& = 0.6.

One important effect must be pointed out here, that
is, the energy transmission coefficient not only depends
on the incident-wave number and the depth of submergence
of the cylinder, but also depends on the incident-wave
slope. This effect has been tested in the special case
where Ka = 0.602, h/a = 1.275 were fixed. The only
variable parameter was the incident-wave slope £€ . The
result showed that the energy transmission coefficient
was equal to 0.85 for E = 0.0459 and equal to 0.93 for

€ = 0.0663. At the same time, the transmitted-wave pattern
measured at a fixed position has also changed. These are

plotted below:
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€ = 0.0459 £ = 0.0663

B. Moderately Submerged Condition (hﬁl = 2, h/a = 3)

In this condition, the transmitted waves became
sinusoidal in shape. The transmission coefficient is
taken as the ratio of the height of the transmitted
wave and incident wave. Their values are somewhat higher
than those in the shallow-submergence condition. The
hump and hollow still exists in the curve of the

transmission coefficient.
C. Deep-Submergence Condition ( h/a:>5)

In this condition, the hump and hollow in the curve
of the transmission coefficient disappeared. In general,
the transmission coefficient is higher than 0.95.

D. Long Waves ( Ka £ 0.2)
It is found that in all cases with Ka £ 0.2 the

transmission coefficient is practically unity. This may
be explained by the fact that the wave slopes were so
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small ( £ < 0.025) that the linearized theory gives a
good prediction of the behavior. There is also the
possibility that the superposition of reflected waves
from the end of the tank and the transmitted waves might
have enlargea the measured values of the apparent

transmitted-wave amplitude.

E. The Phase Angle

Both experimental and first-order theoretical

results indicated a large variation of the phase angle
between the incident waves and transmitted waves when the
cylinder was close to the water surface. In such a case,
neither result is accurate enough. The inaccuracy of
the experimental result is due to the reflection of the
tank. The inaccuracy of the first-order linearized solution
is due to neglecting the nonlinear effect of the finite
wave height. A test at moderate submergence has been
carried out to test the effect of wave slope. In the
test, the wave number was fixed at X = 1.22 and the
submergence factor h/a ~was fixed at 3.0. The incident-~
wave slope was given four different values: §&; = 0.0282,

€¢ = 0.0429, £, = 0.0613, £, = 0.0795. The corresponding
phase angles were ¥ = 73°, % = 67°, Y, = 60°,

Y, = -30°, respectively. The sudden change of phase
angle at € = 0.0795 may have been caused by a nonlinear
effect. However, in the same test, the increment of the

exciting force was found almost to be linear in the wave

slope.

3} The Exciting Forces

In Figure 13, there are displayed the measured
exciting forces and the first-order theoretical solution.



- 15 -

The force function shown in the figure is defined by:

| Fl = znré}A;.
k e F

For deep-water waves, Ka > 0.2, 2Kh > 0.4, all
forces displayed in the chart have the appearance of a
sinusoidal function. The 90 degree phase shift between
the vertical and horizontal forces is verified. The
theoretical prediction stating that the exciting force
decreases exponentially with the depth of submergence is

also verified.

For long waves, for example at Ka = 0.135, where
the ratio of the wave length to the mean water depth is
equal to 2.95, there exists a bottom effect. No matter
how deep the submergence of the cylinder was, the exciting

forces are no longer sinusoidal.

There is a good agreement, in general, between the
experimental and theoretical results. Only in one condition,
at h/a = 1.275, did the experimental curves deviate
significantly from the thecretical solution. The order of
magnitude of the measured horizontal and vertical forces
is the same except in one case. That is, at Ka = 0.4,
hfo. = 1.275, € = 0.044, the case corresponding to the
"hollow" in the energy-transmission curve. There the
horizontal-force amplitude is 1.27 times larger than the

vertical-force amplitude.

In shallow submergence, h/a. = 1.275 and h/4 = 1.50,
there is a horizontal drift force that varied from 0 percent

to 47 percent of the horizontal-force amplitude as Ka
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decrecased from 0.6 to 0.135 and &€ decreased from 0,058

to 0.0194. A second-order vertical suction appeared at

%ﬂx = 1,275. Their values are plotted in Figure 16.

In all other conditions, this second-order force was so
small that its value was out of the range of the sensitivity

of the strain gages.

VI. CONCLUSIONS

1) The linearized potential theory gives a good
description of the phenomenon in case the cylinder is

well submerged.

2) The phase angle between the incident waves and
transmitted waves is found to be very sensitive with
respect to the change of incident-wave slope. This effect
may be related to the change of the proportien of the
energy propagation that passed over the top and below the
cylinder. A further study of this effect is needed.

3) For the transmitted-wave profile, the solution should
be extended to second-order when the submergence factor
( h/a ) is less than 2.

4) The exciting-force measurements were in satisfactory
agreement with the theoretical solution. The viscous

effect seems negligible for the geometry studied here.

5) The reflection coefficient was found to be very small.
One might consider that a submerged cylinder with minimum
reflection coefficient is of circular cross-section.



1)

2)

3)

4)

5)
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